<table>
<thead>
<tr>
<th>Title</th>
<th>Face detection and recognition for DoCaRo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, Yiying</td>
</tr>
<tr>
<td>Citation</td>
<td>Liu, Y. (2010, March). Face detection and recognition for DoCaRo. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2010</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/9042</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2010 The Author(s).</td>
</tr>
</tbody>
</table>
DoCaRo is designed to provide services in a home environment. In order to manage face-to-face interaction with human beings, the ability to detect and recognize human faces is crucial.

Face detection: find a face!
- by using adaptive boosted cascade of haarr-like feature

The figure below shows the Haar-like features used. If the difference between the light and dark region is above a threshold, that feature is said to be present.

1. Edge features
 - (a)
 - (b)
 - (c)
 - (d)

2. Line features
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)
 - (f)
 - (g)
 - (h)

3. Center-surround features
 - (a)
 - (b)

The classifier cascade is a chain of filters.

Face recognition: recognize the person!
- by using Eigenface and Principle Component Analysis method

PROCEDURE OF FACE RECOGNITION

1. Feature extraction
2. Feature vector projection
3. Distance computation
4. Classification

System performance

Detection:
- reduce false detection
- increase detection rate for rotated faces

Recognition: reduce false recognition

Further improvement

Project Title: Face Detection and Recognition for DoCaRo

Supervisor: Prof Er Meng Joo